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1 Introduction

According to the AdS/CFT correspondence [1], type IIB string theory on global AdS5×S5

with N units of five-form flux,
∫

S5

Ĝ5 = N, (1.1)

is dual to N = 4 super-Yang-Mills (SYM) theory on R × S3 with gauge group SU(N).

The string coupling gs is related to the Yang-Mills coupling gYM by 4πgs = g2
YM, while the

radius of curvature RAdS of both AdS5 and S5 is given in terms of the string length ls by

R4
AdS

l4s
= g2

YMN. (1.2)

The Poincaré patch of AdS5 × S5 with N units of five-form flux appears as the near-

horizon limit of N coincident D3-branes. It is dual to N = 4 SYM theory on R
1,3. This

is an example of geometric transition [2, 3], where a spacetime with a number of branes

(measured by the flux through a cycle surrounding the branes) is dual to a spacetime

without branes but where the cycle has become non-contractible (the branes having been

replaced by flux through the topologically non-trivial cycle). Since the D3-branes are BPS,
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they can be separated and placed at arbitrary positions in the dimensions transverse to

their worldvolumes — such configurations correspond to the Coulomb branch of N = 4

SYM theory on R
1,3. D3-branes in AdS5 ×S5 act as domain walls, separating regions that

differ by one unit of five-form flux (and thus have different radius of curvature). If one

wanted to decrease the five-form flux by one unit, one could send one of the D3-branes to

infinity; similarly, to increase N , one could send in parallel D3-branes from infinity. Near-

horizon limits of certain Coulomb branch configurations of D3-branes have been shown to

lead to specific deformations of AdS5 × S5 [4].

N = 4 SYM theory on R × S3 does not have a Coulomb branch: it is lifted by the

conformal coupling of the scalar fields to the curvature of the S3, which effectively makes

those scalars massive. This is consistent with the fact that global AdS cannot be obtained

as the near-horizon limit of parallel D3-branes. However, D3-branes can still be used to

increase the five-form flux N : a spherical D3-brane sent in from infinity is a domain wall; it

will dynamically shrink and annihilate, leaving behind an AdS5 with one more unit of five-

form flux. The fact that a spherical probe D3-brane shrinks is not simply a consequence

of it having a tension, since, in the regime of large radius, the leading effect of the tension

(proportional to the fourth power of the radius of the D3-brane) is cancelled, because of

a BPS relation between D3-brane tension and charge, by a compensating effect due to

the four-form potential. Rather, it is a subleading quadratic potential that causes the

shrinking [5, 6]. The counterpart in the dual gauge theory is the quadratic potential due

to the conformal coupling of the transverse scalar fields.

With the standard supersymmetric boundary conditions, AdS5 × S5 is stable. It is

known, though, that a modification of the standard boundary conditions can introduce

instabilities, allowing AdS5 ×S5 to tunnel into a cosmological spacetime with a big crunch

singularity, i.e. a spacelike singularity reaching the boundary of AdS in finite global time [7].

In the dual gauge theory, the modification of the AdS boundary conditions corresponds to

adding an unstable double trace potential to N = 4 SYM, allowing operators to become

infinite in finite time [8–11]. The aim of the present paper is to provide a D3-brane

interpretation of this instability. We will show that with modified boundary conditions,

a spherical probe D3-brane feels a negative quartic potential in addition to its positive

quadratic potential. As a consequence, AdS can nucleate spherical D3-branes that are

subsequently stretched to infinite size in finite time.1 Every spherical D3-brane that is

nucleated and stretched to infinity leaves behind a spacetime with one less unit of five-form

flux, which is thus more strongly curved than the original AdS. In a gravity approximation

(which in reality breaks down when the radius of curvature becomes of order the string

scale), the result is a big crunch singularity.

Recently, a similar duality has been proposed between AdS4 compactifications of M-

theory or type IIA string theory and ABJM theory, an N = 6 superconformal U(N) ×
U(N) Chern-Simons theory with opposite levels k and −k, respectively [13]. An unstable

1In the context of the AdS/CFT correspondence, it was shown in [12] that a closely related effect

develops for non-supersymmetric spherical branes violating the BPS bound. In our present situation, the

branes classically saturate the BPS bound and the repulsive force is generated by quantum corrections

sensitive to the boundary conditions.
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triple trace deformation of ABJM theory was studied in [14]; as in [7], the corresponding

boundary condition in the bulk AdS4 allows smooth initial data to evolve into a big crunch

singularity. We will show that this instability corresponds to spherical M2-branes or D2-

branes being stretched to infinity in finite time, due to a potential generated by the modified

boundary conditions.

In [8], a double trace deformation of N = 4 SYM was used to obtain a dual field

theory description of a big crunch singularity, and an attempt was made to use self-adjoint

extensions to evolve the system beyond the big crunch. This model is now understood

not to be under good computational control, though, and a new proposal in the context

of ABJM theory will appear in [15]. Our present work shows that finding a consistent

self-adjoint extension amounts to specifying what happens when spherical D-branes are

stretched to infinite radius in finite time. While at present it is unclear what can be

learned from this new perspective, we hope that it will turn out to be useful in addressing

these hard questions. Simpler systems for which our results may be useful are the hairy

black hole solutions of [16], which are dual to stable multi-trace deformations and should

be related to spherical D-branes with finite radius.

This paper is organized as follows. In section 2, we study spherical probe D3-branes

in global AdS5 × S5 with modified boundary conditions. In section 3, we do the same for

spherical probe M2-branes or D2-branes in global AdS4 compactifications. In appendix A,

we compute brane potentials in Poincaré coordinates, which supplement the computations

in global coordinates in the main text.

2 D3-branes in AdS5 × S5

In this section, we study spherical D3-branes in global AdS5 × S5. This theory allows

a consistent truncation to five-dimensional gravity with a negative cosmological constant

coupled to a single scalar field [17]. This scalar field corresponds to quadrupole deforma-

tions of S5 and saturates the Breitenlohner-Freedman bound [18]. We will compute the

D-brane effective potential as a function of the boundary condition on this bulk scalar field.

Specifically, we will focus on boundary conditions corresponding to a classically marginal

double trace deformation of N = 4 SYM theory.

In the Feynman diagrams of interest, the D-brane emits a virtual scalar particle, which

then interacts with the boundary before being reabsorbed by the D-brane. To compute such

diagrams, we need two main ingredients: the coupling of the D3-branes to the bulk scalar

field, and the effect of the boundary condition on the bulk scalar field. The coupling can

be obtained from the well-known D-brane action and from the consistent truncation ansatz

expressing the ten-dimensional bulk fields in terms of the five-dimensional metric and scalar

field. The effect of the boundary conditions can be computed in two different ways. On

the one hand, a modification of the boundary condition corresponds to adding a boundary

term to the bulk action, which gives rise to a (quadratic) vertex that should be included

in Feynman diagrams. The advantage of this approach is that it extends to non-linear

boundary conditions (such as the ones we will study in section 3). On the other hand, the

(linear) boundary conditions we are focusing on in this section can be fully taken into ac-

count by using a modified propagator for the scalar field. This approach has the advantage

that it effectively resums diagrams with arbitrarily many boundary vertices inserted.

– 3 –
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From the point of view of the full string theory on AdS5 × S5, one might wonder

whether it is sufficient to compute the effective potential in the truncated five-dimensional

theory. In particular, spherical D3-branes can also emit and reabsorb many other fields,

which are not described by the consistent truncation. The point is, however, that only the

bulk scalar field of the consistent truncation is directly affected by the modified boundary

conditions: contributions from emission and reabsorption of other fields are the same as

in the standard supersymmetric theory. For our purposes, it is therefore justified to work

within the framework of the consistent truncation.

In section 2.1, we review the basic setup, in particular the relation between modified

boundary conditions in AdS and unstable double trace deformations in SYM. In section 2.2,

we use the consistent truncation ansatz to determine the couplings of a spherical D3-brane

to the bulk scalar field of interest. In section 2.3, we compute the propagator of the

bulk scalar field, for standard as well as modified boundary conditions. In section 2.4, we

compute the D-brane effective potential in the two ways described above. In section 2.5,

we use the Coulomb branch solutions of [4] to provide additional evidence that the big

crunch singularity in the supergravity solutions of [8] is due to branes being pushed to the

conformal boundary of AdS.

2.1 Setup

Type IIB supergravity compactified on S5 can be consistently truncated to five-dimensional

gravity coupled to a single SO(5) invariant scalar ϕ [17]. From the ten-dimensional point of

view, ϕ arises from an SO(5) invariant quadrupole distortion of S5. The bulk action reads

S =
VS5

κ2
10

∫

d5x
√−g

[

R

2
− 1

2
∂µϕ∂

µϕ+
1

4R2
AdS

(

15e2γϕ + 10e−4γϕ − e−10γϕ
)

]

, (2.1)

where γ =
√

2/15, 2κ2
10 = (2π)7α′4g2

s , and VS5 = π3R5
AdS is the volume of the internal man-

ifold. The potential reaches a negative local maximum when the scalar vanishes; this is the

maximally supersymmetric AdS5 state, corresponding to the unperturbed S5 in the type

IIB theory. At linear order around the AdS solution, the scalar obeys the free wave equa-

tion with a mass that saturates the Breitenlohner-Freedman [18] bound2 m2 = −4/R2
AdS.

With the usual supersymmetric boundary conditions, AdS5 is stable.

In global coordinates, the AdS5 metric takes the form

ds2 = −
(

1 +
r2

R2
AdS

)

dt2 +
dr2

1 + r2

R2
AdS

+ r2dΩ2
3 . (2.2)

In all asymptotically AdS solutions, the scalar ϕ decays at large radius as

ϕ(x, r) =
α(x) ln (rµ)

r2
+
β(x)

r2
. (2.3)

Throughout this section, we denote the five-dimensional bulk coordinates by (r, x), where

x collectively denotes the time and three angular coordinates. The arbitrary scale µ,

2In d + 1 dimensions, m2
BF = −d2/(4R2

AdS).
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necessary to define the logarithm, will be chosen to be µ = 1/RAdS for most of this section

(we will comment on this after (2.40)). The standard boundary conditions on the scalar

field would set α = 0. This choice preserves the full AdS symmetry group and has empty

AdS as its stable ground state. However, in the mass range m2
BF ≤ m2 < m2

BF + 1/R2
AdS,

one can consider more general boundary conditions of the form [10]

α = −δW
δβ

, (2.4)

where W (β) is an arbitrary real smooth function.

We will be interested in scalar field boundary conditions

α(x) = fβ(x), (2.5)

where f is an arbitrary constant (for f > 0, smooth initial data can develop a big crunch

singularity [8]). This boundary condition does not preserve supersymmetry and breaks the

asymptotic AdS symmetries to R × SO(4) [19].

To obtain the boundary condition (2.5) from a variational principle, one adds boundary

terms to the bulk action (2.1). To do this in a precise way, we provide an IR regulator

in the bulk by restricting the radial coordinate to 0 ≤ r ≤ Λ. (Through the UV/IR

correspondence, the location Λ of the regularized boundary in the bulk will correspond to

a UV cutoff in the dual field theory). The boundary condition α = fβ is obtained from

the boundary term in the variation of the action if we add to the scalar field action (2.1)

the term

Sbdy =
VS5

κ2
10RAdS

∫

∂
d4x

√
gbdy

[

−1 +
f

2 (1 + f ln (Λ/RAdS))

]

ϕ2. (2.6)

The first term also appeared in [20] (see also [21]).

The AdS/CFT correspondence states that type IIB string theory on global AdS5 ×S5

with standard (f = 0) boundary conditions is dual to N = 4 SYM theory on R × S3.

Because of the conformal coupling to the curvature of S3, which we choose to be of unit

radius, the six adjoint scalar fields Φj of N = 4 SYM effectively get masses m2 = 1.3

According to [10, 11, 20], changing the boundary condition on ϕ to (2.5) with non-zero f

corresponds to adding a double trace potential to the SYM action,

S = S0 +
f

2

∫

O2, (2.7)

where O is the dimension 2 chiral primary operator dual to ϕ,

O = cTr

[

Φ2
1 −

1

5

6
∑

i=2

Φ2
i

]

(2.8)

with c a normalization constant of order 1/N (in conventions such that the fields Φi

have canonical kinetic terms). The coupling f in (2.7) is classically marginal but in fact

marginally relevant for f > 0 [10].

3For a d-dimensional boundary, the mass would be m2 = d−2
4(d−1)

RSd−1 , where RSd−1 is the Ricci scalar

of Sd−1.
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The duality between type IIB string theory on (the Poincaré patch of) AdS5 ×S5 and

N = 4 SYM theory (on R
4) can be obtained by taking a decoupling limit of a system

of coincident D3-branes [1]. In this picture, the eigenvalues of Φj correspond to D-brane

positions, and the double trace potential in (2.7) provides a quartic potential for these

D-brane positions. For f > 0, the potential is unbounded below and sufficiently strong to

push eigenvalues to infinity in finite time. Global AdS5 × S5, which is the background of

interest in [7, 8], does not straightforwardly appear as a near-horizon limit of D3-branes.

One could still expect that there should be a similar D-brane interpretation of the unstable

potential in (2.7). It is natural to assume that spherical D3-branes will play a role in this,

as in [5, 6]. The main purpose of the present paper is to make this picture precise by

computing the effective potential felt by spherical probe D3-branes as a function of the

boundary conditions.

2.2 Coupling of the bulk scalar field to spherical D3-branes

The fact that the action (2.1) is a consistent truncation of type IIB supergravity compact-

ified on S5 means that with any solution of (2.1) one can associate a solution of the full

type IIB supergravity equations of motion. The lift to ten dimensions is explicitly given

in [22]. Let F = eγϕ (with γ defined after (2.1)) and ∆ = F sin2 ξ + F−5 cos2 ξ, where ξ is

a coordinate in terms of which the metric of the unit sphere would read

dΩ2
5 = dξ2 + sin2 ξdΩ2

4 , (2.9)

with 0 ≤ ξ ≤ π. The full ten-dimensional metric is

ds210 = ∆1/2ds25 +R2
AdS

[

F 4∆1/2dξ2 + F−1∆−1/2 sin2 ξdΩ2
4

]

. (2.10)

The self-dual five-form Ĝ5 = G5 + ∗G5 is determined by

G5 = − U

RAdS
ǫ5 + 6RAdS sin ξ cos ξF−1 ∗ dF ∧ dξ , (2.11)

where we have denoted

U = −3F 2 sin2 ξ + F−10 cos2 ξ − F−4 − 4F−4 cos2 ξ . (2.12)

In (2.11), ǫ5 and ∗ are the five-dimensionals volume-form and dual.

To compute the coupling of a spherical D3-brane to the scalar field ϕ, we consider a

probe D3-brane in the ten-dimensional lifted solution. In our computation of the effective

potential for the D3-brane radius, we will only need the source term for the bulk scalar,4

so we work in a linearized approximation of the coupled scalar-gravity system about the

AdS background. The action of the probe brane is

SD3 = SDBI + SWZ = −τ3
∫

d4x

√

−Ĝ+ µ3

∫

Ĉ4 , (2.13)

4To compare with the deformation (2.7) of SYM, we will also need the kinetic terms for the scalar fields

on the D3-brane world-volume.

– 6 –
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where Ĝ is the determinant of the pull-back of the ten-dimensional metric to the D3-brane

world-volume and dĈ4 = Ĝ5. The tension and charge are given by τ3 = µ3 =
√
π/κ10. In

the static gauge, the Dirac-Born-Infeld action includes the terms

SDBI = −τ3
∫

d4x
√

−ĝ
[

1 − 5γϕ

(

cos2 ξ − 1

5
sin2 ξ

)

+
1

2
gij∂ax

i∂axj

]

, (2.14)

where ĝ is the determinant of the pull-back of the five-dimensional metric gµν to the four-

dimensional world-volume, the index a labels the four coordinates along the D3-brane

world-volume, the index i runs over the six transverse dimensions, and γ =
√

2/15 was

introduced in (2.1). We rewrite the Wess-Zumino action as an integral over the five-

dimensional volume enclosed by the D3-brane

SWZ = µ3

∫

V5

Ĝ5 =
µ3

RAdS

∫

d5x
√−g

[

4 − 10γϕ

(

cos2 ξ − 1

5
sin2 ξ

)]

, (2.15)

where g denotes the determinant of the bulk metric. From (2.14) and (2.15), we read off

the sources of the bulk scalar field.

We choose the bulk geometry to be AdS5 in global coordinates (2.2), so that
√−ĝ =

r3[1 + r2/R2
AdS]1/2√gS3 and

√−g = r3
√
gS3, and specialize to a spherical D3-brane of

radius R in AdS5 that is localized at a point on the S5. By x we collectively denote the

time coordinate and the coordinates on S3. Due to the SO(5) symmetry of the problem,

the location of the brane on S5 will only enter the action through the coordinate ξ on S5

(see (2.9)). We will be interested in D-branes near the conformal boundary of spacetime,

in particular spherical branes with radius R≫ RAdS, for which the sources J ≡ 1√
g

δS
δϕ

∣

∣

∣

ϕ=0

for ϕ reduce to

JDBI(r) = 5γ
τ3

RAdS

(

cos2 ξ − 1

5
sin2 ξ

)

rδ(r −R) , (2.16)

JWZ(r) =







−10γ
µ3

RAdS

(

cos2 ξ − 1

5
sin2 ξ

)

r ≤ R

0 r > R .
(2.17)

In fact, these expressions for the sources are valid not only in a pure AdS background,

but also for branes near the boundary of more general asymptotically AdS backgrounds.

Considering a static, spherically symmetric ansatz

ds25 = −e−2δ(r)f(r)dt2 +
dr2

f(r)
+ r2dΩ2

3 (2.18)

and solving the equations of motion following from (2.1),

δ′(r) = −1

3
rϕ′(r)2 , (2.19)

rf ′(r) − 2 + 2f(r) = −1

3
r2

[

f(r)ϕ′(r)2 + 2V (ϕ)
]

, (2.20)

f(r)
[

ϕ′(r) + rϕ′′(r)
]

= r
∂V

∂ϕ
+

2

3
ϕ′(r)

(

r2V (φ) − 3
)

, (2.21)

– 7 –
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we find the asymptotic behavior

f(r) ∼ 1 +
r2

R2
AdS

, (2.22)

ϕ(x, r) ∼ 1

r2
[α(x) ln (rµ) + β(x)] , (2.23)

δ(x, r) ∼ 1

3
α(x)2

ln2 (rµ)

r4
. (2.24)

In the limit of large radial coordinate we are interested in, (2.24) will not affect the compu-

tation of the D3-brane effective potential, since it will contribute to subleading order in 1/r.

After computing the effective potential for the D3-brane transverse coordinates, we

will want to compare it with the deformation (2.7) of the dual SYM theory. For that

purpose, it will be useful to relate R and the S5 angles to canonically normalized scalar

fields. From (2.14), we can see that, for R≫ RAdS, the scalar fields

φ1 ≡ √
τ3RAdSR cos ξ, φ2 ≡ √

τ3RAdSR sin ξ cos Ω1, . . . (2.25)

have canonical kinetic term

Skin = −1

2

∫

d4x̃ ∂αφi∂
αφi (2.26)

in the coordinate system x̃α = (t̃ ≡ t/RAdS,Ωi) with metric

ds̃2 = −dt̃2 + dΩ2
3 . (2.27)

To make contact with N = 4 SYM, the fields φi of (2.25) play the role of eigenvalues of

the fields Φi in (2.8):

Φi = diag(φi, 0, . . . , 0), i = 1, . . . , 6 . (2.28)

2.3 Propagator of the bulk scalar field

We now turn to the computation of the bulk propagator for the scalar field (satisfying the

boundary condition (2.5)). To solve the scalar equation of motion following from (2.1), we

separate variables writing

ϕ(x, r) = e−iωtYℓ,m(Ω)Ψ(r) , (2.29)

where Yℓ (with ℓ ≥ 0) is the ℓth spherical harmonics on S3, satisfying

∇2
S3Yℓ = −ℓ(ℓ+ 2)Yℓ . (2.30)

Letting a = 1 + 1
2(ℓ+ ω) and b = 1 + 1

2 (ℓ− ω), and performing the change of coordinates

V =
r2

R2
AdS + r2

, (2.31)

the propagator is constructed from the following two radial solutions [23]. The first solution,

Ψ1(V ) = (1 − V )V ℓ/2
2F1(a, b, a+ b;V ) , (2.32)

– 8 –
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satisfies the regularity condition

Sorigin = lim
r→0

∫

rfixed
d4x

√
ggrrϕ∂rϕ→ 0 (2.33)

at the origin. (For this solution, the boundary term of the classical action vanishes at the

origin and therefore we do not have contributions to correlation functions of the dual field

theory coming from the interior of the spacetime [23].) The second solution,

Ψ2(V ) = (1 − V )V ℓ/2
{

2F1(a, b, 1; 1 − V ) [1 + C∞ ln(1 − V )] + (2.34)

C∞

∞
∑

k=1

(1 − V )k
(a)k(b)k

(k!)2
[ψ(a+k)+ψ(b+k) − 2ψ(1+k) − ψ(a) − ψ(b) − 2γE ]

}

,

where γE denotes Euler’s constant, satisfies the boundary conditions (2.5) defined with the

scale µ = 1/RAdS, provided that we choose

C∞ = −f
2
. (2.35)

Combining the two expressions with the appropriate normalization factor, we obtain the

Feynman propagator

Gf (x, V ;x′, V ′) =− κ2
10

R2
AdSVS5

∫ ∞

−∞

dω

2π

∑

ℓ,m

Γ(a)Γ(b)

ℓ!(2ℓ+2)

1

1 − C∞[ψ(a)+ψ(b)+2γE ]
× (2.36)

e−iω(t−t′)Yℓ,m(Ω)Yℓ,m(Ω′)
[

θ(V ′− V )Ψ1(V )Ψ2(V
′) + θ(V− V ′)(V ↔ V ′)

]

.

2.4 D3-brane effective potential

Consider a probe D3-brane extended along a three-sphere with radius R in global AdS5 and

localized at a point in S5. In perturbation theory, the leading contribution to the D-brane

effective potential is obtained by evaluating the D-brane action (2.13) in the AdS5×S5 back-

ground. Combining (2.14) and (2.15) and making use of the BPS relationship τ3 = µ3, the

leading order terms in the radial coordinate cancel among the two contributions. The term

that survives in the DBI action results in an attractive quadratic potential V ∼ R2, corre-

sponding to the conformal coupling of the massless scalar fields in the dual SYM theory on

R×S3 [5, 6]. This contribution is clearly independent of f , i.e., of the boundary condition

on the bulk scalar field. (Note that AdS5 × S5 is compatible with the boundary condi-

tions (2.5) we consider. This was not the case for the boundary conditions studied in [6].)

The first contribution that is sensitive to the boundary condition is a diagram in

which the brane emits and reabsorbes a ϕ particle. This diagram involves a ϕ propaga-

tor, which depends on f according to (2.36) with (2.35). Using this propagator and the

sources (2.16), (2.17), we find the following term in the D3-brane effective action:

Seff =
1

2

∫

d4x

∫ R

0
dr

√
g [JBI(r) + JWZ(r)] ×

∫

d4x′
∫ R

0
dr′

√
g Gf (x, r;x′, r′)

[

JBI(r
′) + JWZ(r′)

]

= f
5

12

τ2
3κ

2
10

VS5

∫

d4xR4

(

cos2 ξ − 1

5
sin2 ξ

)2

. (2.37)
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Using the field redefinition (2.25) and the change of variables that brings the boundary

metric in the form (2.27), we can rewrite the effective potential as

∫

d4x̃ Veff(x̃) = −f 5π2

3N2

∫

d4x̃

[

φ2
1 −

1

5

6
∑

i=2

φ2
i

]2

. (2.38)

For f > 0, this is a quartic potential that pulls the spherical branes to the boundary of AdS.

This potential agrees with what one would expect based on the dual N = 4 SYM theory.

In particular, it is consistent with the O2 structure of (2.7) with (2.8), as well as with the

N -dependence of the deformation. In fact, the computation can be easily generalized to

configurations with more than one brane.

This is the main result of this section, and we could stop here. However, our derivation

crucially relied on the fact that the boundary condition (2.5) is linear, so that it could be

fully taken into account by the modified propagator (2.36). Equivalently, the boundary

term (2.6) is quadratic in ϕ, so that its effect can be absorbed in a modification of the

propagator. This class of boundary conditions is very special. In fact, in the next section

we will be interested in a non-linear boundary condition corresponding to a cubic boundary

term and a triple trace interaction in the dual field theory. Therefore, we will now compute

the D3-brane potential in a way that easily generalizes to non-linear boundary conditions.

The idea is to work with the standard f = 0 propagator (corresponding to supersymmetric

boundary conditions) and to treat the f -dependent boundary term in (2.6) as an inter-

action. Then, as illustrated in figure 1, a virtual ϕ particle emitted by a D3-brane can

propagate to the boundary and “feel” the f -dependent boundary interaction before being

reabsorbed by the D3-brane (the effect of the f -independent boundary term is already

accounted for in the f = 0 propagator). In fact, the virtual ϕ particle can interact with the

boundary an arbitrary number of times before being reabsorbed (see figure 2). Our pre-

vious computation, where the effect of the modified boundary condition was incorporated

in a modified propagator, amounts to a resummation of all these contributions (which is

possible for linear boundary conditions but not in more general cases). Let us thus compute

the contribution to the D3-brane effective potential from a virtual ϕ particle interacting

with the boundary a single time. Using the f = 0 propagator (2.36) (with C∞ = 0) and

the expressions (2.16), (2.17) for the sources, we find

Seff =
f

2
(

1 + f ln Λ
RAdS

)

VS5

RAdSκ
2
10

∫

∂
d4x

√
gbdy

∫

d5x′
√
g

[

JBI(r
′) + JWZ(r′)

]

×

Gf=0(x
′, r′;x,Λ)

∫

d5x′′
√
gGf=0(x,Λ;x′′, r′′)

[

JBI(r
′′) + JWZ(r′′)

]

, (2.39)

which becomes

∫

d4x̃ Veff(x̃) = − f

1 + f ln Λ
RAdS

5π2

3N2

∫

d4x̃

[

φ2
1 −

1

5

6
∑

i=2

φ2
i

]2

. (2.40)

The difference between (2.38) and (2.40) is that f got replaced with f/[1 + f ln(Λ/RAdS)]

(which formally vanishes when the cutoff Λ is removed). From the point of view of our com-

putations, the difference corresponds to the diagrams in figure 2, with multiple boundary
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Figure 1. A virtual ϕ particle is emit-

ted by the D3-brane, interacts with the

boundary at r = Λ and is reabsorbed by

the brane.

Figure 2. A virtual ϕ particle emitted by

the D3-brane interacts an arbitrary num-

ber of times with the boundary before re-

absorption.

Figure 3. A two-loop example of factorizable diagrams that survive in the large N limit and

renormalize the coupling f .

interactions — taking them into account will convert f/[1 + f ln(Λ/RAdS)] into f . From

a dual field theory point of view, the difference lies in the scale at which the couplings

are defined (cf. [10]). When expressing the asymptotic behavior (2.3) of the scalar field,

we had to choose a scale µ to define the logarithm ln (rµ), and we chose5 µ = 1/RAdS,

the scale appearing in the metric (2.2). This scale corresponds to a renormalization scale

in the boundary theory [10]. On the other hand, f/[1 + f ln(Λ/RAdS)] is the coupling

defined at the UV cutoff scale Λ/R2
AdS of the dual field theory. From a large N field theory

perspective, the relation between the couplings at both scales is given by a resummation of

(factorizable) planar diagrams with an arbitrary number of loops — the two-loop diagram

is drawn in figure 3.

2.5 Expanding D3-branes, five-form flux and geometric transition

We have seen that the radius R of a spherical D3-brane in AdS5 with modified boundary

condition (labeled by f) on a quadrupole deformation mode of S5 feels a quartic potential.

5If in (2.3) we had left a generic scale µ, (2.38) would have read

Z

d4x̃ Veff(x̃) = −
f

1 − f ln (µRAdS)

5π2

3N2

Z

d4x̃

"

φ2
1 −

1

5

6
X

i=2

φ2
i

#2

. (2.41)
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For f > 0, this potential tries to blow up the D3-brane to infinite radius in finite time.

For sufficiently small spherical D3-branes, this is prevented by the positive R2 term in the

potential, corresponding to the conformal coupling of the SYM scalars to the curvature of

S3. For sufficiently large branes, the quartic potential wins and the branes are pushed to

the boundary of AdS5 in finite time.

In which contexts do such large spherical branes play a role? On the one hand, one

could start with a system without them and they could be spontaneously created by quan-

tum tunneling. This could happen, for instance, to the pure AdS5 × S5 with modified

(f > 0) boundary conditions, which is known to be only meta-stable (we expect the nu-

cleating spherical branes to be closely related to the instanton solutions of [7]). This is

obviously a dynamical process that cannot be described in classical supergravity. On the

other hand, one could consider an initial state with large spherical D3-branes present and

study the time evolution of this state. This is analogous to the point of view taken in [7, 8],

where the interest was in the evolution into a big crunch, not so much in instabilities of

pure AdS5.

To make the analogy between spherical D3-brane evolution and the (super)gravity

solutions of [7, 8] more precise, we have to relate the radius R of spherical D3-branes to the

scalar field ϕ appearing in (2.1). As we shall discuss in section 2.5.1, this was done in [4],

at least for the related system of flat D3-branes and AdS5 in Poincaré coordinates. The

upshot is that configurations that fit in the consistent truncation (2.1) correspond not to a

single D3-brane but to specific distributions of D3-branes, and thus to specific distributions

of radii. So to make contact with the supergravity solutions of [7, 8], we should start with

such a distribution of large spherical D3-branes.

One point that may appear puzzling at first is related to the five-form flux through

the S5 in the ten-dimensional supergravity solutions of [8]. A spherical D3-brane acts as

a domain wall, with the five-form flux inside being one unit smaller than the flux outside.

If the big crunch instability in the solutions of [8] corresponds to spherical D3-branes

expanding to infinite size, one might thus expect that at any value of the radial coordinate

r, the five-form flux should decrease as a function of time as spherical D3-branes expand

from radius smaller than r to radius bigger than r. However, if we compute the flux through

S5 for the solutions of [8], we find that the flux remains constant as the bulk scalar field

evolves in time:
∫

S5

Ĝ5 = −
∫

dξdΩ5U∆−2R4
AdS = 16π4gsα

′2N . (2.42)

A related point is that the solutions of [8] solve the supergravity equations of motion

without any D3-brane sources present. The resolution of this paradox lies in the concept of

geometric transition [2, 3], which relates a situation with D-brane sources explicitly present

to a situation with the D-branes replaced by flux (and the location of the D-branes “cut

out” of the space).6 In our spherical D3-brane picture, we considered the shape of the S5

not to change with time and treated the D3-branes as sources; in the solutions of [8], the

D3-branes are not explicitly present, but the shape of the S5 changes in such a way that

the would-be locations of the D3-branes are always “cut out” of the spacetime.

6Of course, in the present situation, neither description is valid in the regime in which the space-time is

highly curved.
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2.5.1 Relating D3-brane positions with the bulk scalar field

As mentioned earlier in this section, the bulk scalar field ϕ can be related to D3-brane

positions. The near-horizon limit of a distribution σ of parallel D3-branes in n transverse

dimensions is given by

ds2 =
1√
H

(

−dt2 + dx2
1 + dx2

2 + dx2
3

)

−
√
H

6
∑

i=1

dy2
i ,

H =

∫

dnωσ(~ω)
R4

AdS

|~y − ~ω|4 . (2.43)

For generic distributions σ, this does not fall in the class of metrics (2.10), so generic

D3-brane configurations cannot be described using the consistent truncation (2.1). In [4],

it was shown that specific configurations of D3-branes do have near-horizon geometries

that can be described using the consistent truncation. For instance, an SO(5) symmetric

configuration of D3-branes distributed on a one-dimensional interval of length ℓ according

to σ(~ω) = 2
πℓ2

√

ℓ2 − |~ω|2 gives rise to the metric

ds2 =
ξr2

λ3R2
AdS

[

dx2
µ +

R4
AdS

r4
dr2

λ6

]

+
λ3R2

AdS

ξ

[

ξ2dθ2 + cos2 θdΩ2
4

]

, (2.44)

with

λ12 = 1 +
ℓ2

r2
, ξ2 = 1 +

ℓ2

r2
cos2 θ . (2.45)

Comparing with (2.10), one finds that in the regime of large radial coordinate, the scalar

field profile is

ϕ(x, r) =
ℓ2

6γ

1

r2
, (2.46)

with γ defined after (2.1). Therefore, the coefficient of the asymptotic fall-off of ϕ is

directly related to the size over which D3-branes are spread out. This conclusion holds for

flat D3-branes and in the Poincaré coordinate system, which appears when taking near-

horizon limits. However, since near the boundary of AdS spherical branes are almost flat

and Poincaré coordinates are a good approximation to global coordinates, we expect the

conclusion to extend to large spherical D3-branes in global AdS.

3 M2-branes in AdS4 × S7/Zk

In this section, we study spherical M2-branes in global AdS4 × S7 and AdS4 × S7/Zk. M-

theory allows a consistent truncation to four-dimensional gravity with a negative cosmolog-

ical constant coupled to a single scalar field [24]. This scalar corresponds to a quadrupole

deformation of the seven-sphere, has a mass that is above the Breitenlohner-Freedman

bound [18] and preserves a subgroup of the full SO(8) symmetry. Along the lines of the

discussion in section 2, we compute the M2-brane effective potential as a function of the

boundary conditions on this bulk scalar field. Therefore, we determine the coupling of the

five-dimensional scalar to M2-branes considering the M2-brane action and the consistent
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truncation ansatz that relates the eleven and four-dimensional solutions. We observe that

the modified boundary conditions correspond to adding a cubic boundary interaction to

the bulk action and we compute the interaction of the M2-brane with the boundary via

this cubic vertex. (Note that, due to the non-linearity of the boundary conditions we will

consider, their effect cannot be absorbed in a modification of the scalar field propagator.)

Specifically, we will consider a class of AdS invariant boundary conditions that corre-

sponds to adding a marginal triple trace deformation to the dual field theory [7, 13, 14]. We

will first discuss M-theory on AdS4 × S7, which is obtained as the near-horizon geometry

of M2-branes in flat space and is dual to the k = 1 case of ABJM theory. Then we will

consider ABJM theory for general k, which corresponds to M2-branes on a Zk orbifold of

C
4, which have AdS4 × S7/Zk as near-horizon geometry.

In section 3.1 we review the bulk setup as well as some relevant aspects of ABJM theory.

We identify the deformation that corresponds, according to the AdS/CFT dictionary, to

our choice of boundary conditions. In section 3.2, we use the lift to the eleven-dimensional

solution to identify the coupling of the bulk scalar field to spherical M2-branes. In section

3.3 we compute the propagator for the four-dimensional scalar field (for standard boundary

conditions). In section 3.4, we compute the potential for spherical M2-branes in AdS4×S7.

Finally, in section 3.5, we extend the discussion to M2-branes in AdS4×S7/Zk and comment

on the ’t Hooft limit of the result.

3.1 Setup

M-theory in asymptotically AdS4 × S7 spacetimes has four-dimensional SO(8) gauged

N = 8 supergravity as its low energy limit. This theory allows a consistent truncation

to four-dimensional gravity coupled to a single scalar field that preserves an SO(4)×SO(4)

symmetry

S =
VS7

κ2
11

∫

d4x
√
g

[

R

2
− 1

2
∂µϕ∂

µϕ+
1

R2
AdS

(

2 + cosh(
√

2ϕ)
)

]

, (3.1)

with 2κ2
11 =(2π)8ℓ9p in terms of the eleven-dimensional Planck length and VS7=π4(2RAdS)7/3.

The potential has a maximum for vanishing scalar field that corresponds to the AdS4

vacuum solution. Small fluctuations around the the AdS solution have a mass m2 =

−2/R2
AdS, which is above the BF bound (see footnote 2), and therefore the maximally

supersymmetric solution, with the standard boundary conditions, is both perturbatively

and non-perturbatively stable. In global coordinates the AdS4 metric reads

ds2 = −
(

1 +
r2

R2
AdS

)

dt2 +
dr2

1 + r2

R2
AdS

+ r2dΩ2
2 . (3.2)

In any asymptotically AdS solution, the scalar field behavior at large radial coordinate is

ϕ(x, r) =
α(x)

r
+
β(x)

r2
, (3.3)

where x collectively denotes the time coordinate and the S2 angles. The usual boundary

conditions correspond to taking either α = 0 (which can be chosen for any m2) or β = 0
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(which can be chosen for scalars in the mass range m2
BF < m2 < m2

BF + 1/R2
AdS). There

exists however a whole one-parameter family of AdS invariant boundary conditions, i.e.,

boundary conditions that preserve the asymptotic symmetries of AdS spacetime, which

allow the construction of well-defined and finite Hamiltonian generators [19, 25]. The

general class is

β(x) = −hα(x)2 , (3.4)

where h is an arbitrary constant [25]. For h 6= 0, smooth asymptotically AdS initial data

can evolve into a big crunch singularity [7].7

Adding to the bulk action (3.1) the boundary term

Sbdy =
VS7

κ2
11RAdS

∫

∂
d3x

√
gbdy

(

−1

2
ϕ2 +

h

3
ϕ3 +

h2

2
ϕ4

)

, (3.5)

the boundary condition (3.4) follows from a variational principle. As in section 2.1, we

have introduced a regularized boundary ∂ in spacetime, located at r = Λ.

M-theory in asymptotically AdS4 × S7 spacetimes with β = 0 boundary conditions is

dual to the three-dimensional superconformal field theory that describes the low energy

dynamics of coincident M2-branes. In [13], Aharony, Bergman, Jafferis and Maldacena

(ABJM) proposed a specific three-dimensional N = 6 superconformal U(N)×U(N) Chern-

Simons-matter theory with levels k and −k as the world-volume theory of N coincident

M2-branes on a C
4/Zk singularity. Besides the two U(N) gauge fields A and Â, the theory

contains scalar fields Y A, A = 1, . . . , 4, transforming in the fundamental representation of

the SU(4)R R-symmetry group and in the bifundamental (N, N̄ ) of the gauge group. The

Hermitean conjugate scalar fields Y A† transform in the anti-fundamental representation of

SU(4)R and in the (N̄ ,N) of the gauge group. The action reads

S0 =

∫

d3x

[

k

4π
ǫabcTr

(

Aa∂bAc +
2i

3
AaAbAc − Âa∂bÂc −

2i

3
ÂaÂbÂc

)

−Tr(DaY
A)†DaY A + Vbos + terms with fermions

]

, (3.6)

where Vbos is a sextic potential for the scalars and we will not need the fermion fields

explicitly in the following. The bulk setup we considered in this section corresponds to the

case k = 1, for which the transverse space to the M2-branes is simply R
8. We will discuss

Chern-Simons level k > 1 in section 3.5. In ABJM theory on R × S2, the four complex

scalars Y A effectively get mass m2 = 1/4 due to the conformal coupling to the curvature

of the S2 (which we choose to have unit radius; see footnote 3). The boundary condition

β = −hα2 corresponds to adding a marginal triple trace deformation to the boundary action

S = S0 +
h

3

∫

d3xO3 . (3.7)

Here, O is the dimension one chiral primary operator

O = c Tr
(

Y 1Y †
1 + Y 2Y †

2 − Y 3Y †
3 − Y 4Y †

4

)

, (3.8)

7The sign of h is irrelevant, as it can be changed by redefining ϕ → −ϕ.
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which preserves the same SO(4)×SO(4) subgroup of SO(8) as the bulk scalar ϕ in the con-

sistent truncation. The constant c in (3.8) depends on the two dimensionless parameters

N and k in a way that we will determine in section 3.4.

Taking the decoupling limit of a system of coincident M2-branes in eleven-dimensional

flat space, we observe that the world-volume field theory of ABJM with k = 1 has a dual

gravitational description in terms of M-theory on AdS4×S7. In this description, the eigen-

values of the four complex scalar fields Y A and of their Hermitean conjugates correspond

to M-brane positions in the transversal space as in the case of N = 4 SYM (see section 2.3

of [13] for a discussion, and [26] for more details). The deformation (3.7) provides a sextic

potential for these positions that is unbounded below and above, whatever the sign of h.

This potential is sufficiently strong to make the eigenvalues become infinite in finite time,

corresponding to M2-branes reaching the conformal boundary of AdS in finite time. In sec-

tions 3.4 and 3.5, we will obtain the effective potential of spherical M2-branes as a function

of the boundary conditions in the bulk and show that it matches the deformation (3.7).

3.2 Coupling of the bulk scalar field to spherical M2-branes

The lift of the four-dimensional solution of (3.1) to eleven-dimensional supergravity is given

in [27]. Letting F = eϕ/
√

2 and ∆̃ = F cos2 θ+F−1 sin2 θ, the full eleven-dimensional metric

and four-form read

ds211 = ∆̃2/3ds24 + 4R2
AdS

[

∆̃2/3dθ2 + ∆̃−1/3
(

F sin2 θdΩ2
3 + F−1 cos2 θdΩ̃2

3

)]

, (3.9)

F̂4 = − U

RAdS
ǫ4 + 8RAdS sin θ cos θF−1 ∗ dF ∧ dθ , (3.10)

with

U = −2 − F 2 cos2 θ − F−2 sin2 θ . (3.11)

We have chosen coordinates in terms of which the unit seven-sphere metric would read

dΩ2
7 = dθ2 + sin2 θdΩ2

3 + cos2 θdΩ̃2
3 , (3.12)

with 0 ≤ θ ≤ π and, in (3.10), ǫ4 and ∗ are the four-dimensional volume-form and dual.

We want to repeat the procedure we carried out in section 2.2 and consider a probe

M2-brane in the eleven-dimensional lifted solution to determine its coupling to the bulk

field ϕ. The action of the probe brane is

SM2 = SDBI + SWZ = −τ2
∫

d3x
√

Ĝ+ µ2

∫

Ĉ3 , (3.13)

where Ĝ is the determinant of the pull-back of the eleven-dimensional metric to the M2-

brane worlvolume, dĈ3 = F̂4 and where, for convenience, we have split the M2-brane action

in analogy with the conventional notation for D-brane actions . The tension and charge

are τ2 = µ2 = 2π(2πℓp)
−3. In the static gauge and to linear order in ϕ, the “DBI” part of

the action reads

SDBI = −τ2
∫

d3x
√

−ĝ
[

1 +
1√
2
ϕ

(

cos2 θ − sin2 θ
)

+
1

2
gij∂ax

i∂axj

]

, (3.14)
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where ĝ is the determinant of the pull-back of the four-dimensional metric gµν to the

three-dimensional world-volume, the index a labels the coordinates along the M2-brane

world-volume and the index i runs over the eight transverse directions. The Wess-Zumino

action is

SWZ =
µ2

RAdS

∫

V4

d4x
√−g

[

3 +
√

2ϕ
(

cos2 θ − sin2 θ
)

]

, (3.15)

expressed as an integral over the four-dimensional volume enclosed by the M2-brane. Here

g denotes the determinant of the bulk metric.

Choosing the bulk geometry to be AdS4 in the global coordinates (3.2) and specializing

to a spherical M2-brane of radius R that is localized on S7, the sources for the scalar

field ϕ are

JDBI(r) = − τ2
RAdS

1√
2
(cos2 θ − sin2 θ)rδ(r −R) , (3.16)

JWZ(r) =







2
µ2

RAdS

1√
2
(cos2 θ − sin2 θ) r ≤ R

0 r > R .
(3.17)

To interpret the result we will obtain for the effective potential in the language of ABJM

theory and compare it with the deformation (3.7), we introduce canonically normalized

scalars on the conformal boundary of metric ds̃2 = −dt̃2 +dΩ2
3. The relation between these

scalars and the M2-brane radius R and S7 angles is

φ1 ≡ 2RAdS

√

τ2R cos θ cos Ω1, φ2 ≡ 2RAdS

√

τ2R cos θ sin Ω1 cos Ω2, . . .

φ5 ≡ 2RAdS

√

τ2R sin θ cos Ω4, φ6 ≡ 2RAdS

√

τ2R sin θ sin Ω4 cos Ω5, . . . (3.18)

as can be seen form (3.14). Complex combinations of these fields will correspond to eigen-

values of the fields Y A appearing in (3.6).

3.3 Propagator of the bulk scalar field

To compute the propagator for the field ϕ, we follow again [23] and separate variables as

ϕ(x, r) = e−iωtYℓ,m(Ω)Ψ(r) , (3.19)

where the spherical harmonics satisfy ∇2
S2Yℓ = −ℓ(ℓ+1)Yℓ, with ℓ ≥ 0. The radial solution

that is regular in the interior, in the sense of (2.33), is

Ψ1(V ) = (1 − V )V ℓ/2
2F1

(

a, b, a+ b− 1

2
;V

)

. (3.20)

The propagator is constructed from (3.20) and the radial solution with asymptotic behavior

Ψ2(V ) = (1 − V )1/2V ℓ/2

[

2F1

(

a− 1

2
, b− 1

2
,
1

2
; 1 − V

)

+K∞ 2F1

(

a, b,
3

2
; 1 − V

)]

,

(3.21)

in terms of a coefficient K∞ that implements the specific choice of boundary conditions.

The standard supersymmetric choice β = 0 sets K∞ = 0. In (3.20) and (3.21), we have

again denoted a = 1 + 1
2(ℓ+ ω), b = 1 + 1

2(ℓ− ω) and V = r2/(R2
AdS + r2).
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Combining the two solutions above with the appropriate normalization factor, we

obtain the Feynman propagator

GF (x, V ;x′, V ′) = − κ2
11

RAdSVS7

∫ ∞

−∞

dω

2π

∑

ℓ,m

Γ(a− 1
2)Γ(b− 1

2)

2
√
πΓ(a+ b− 1

2)
e−iω(t−t′) × (3.22)

Yℓ,m(Ω)Yℓ,m(Ω′)
[

θ(V ′ − V )Ψ1(V )Ψ2(V
′) + θ(V − V ′)(V ↔ V ′)

]

.

3.4 M2-brane effective potential

In this section, we compute the effective potential for the radial coordinate R of a probe

M2-brane that extends along a two-sphere and is localized on S7. We evaluate the M2-

brane action (3.13) in an AdS4 × S7 background.8 The BPS relation between the charge

and tension of the brane guarantees the cancellation of the leading order terms in the radial

coordinate, as can be seen from (3.14) and (3.15). The h-independent term that survives

the cancellation is an attractive potential linear in R, which corresponds to the conformal

coupling of the scalar fields Y A of the dual theory on R × S2. The dependence of the

potential on the modified boundary conditions shows up, to lowest order, in a Feynman

diagram in which the probe brane interacts with the boundary, exchanging scalar ϕ modes

through the cubic coupling in (3.5). Generalizing (2.39) to a cubic boundary interaction,

we obtain

Seff =
h

3

τ3
2κ

4
11RAdS

V 2
S7

∫

d3xR3 1

2
√

2

(

cos2 θ − sin2 θ
)3
. (3.23)

In terms of the boundary fields of equation (3.18) and of the background metric g̃ defined

above (3.18), the result becomes

∫

d4x̃ Veff(x̃) = − h

N3

3π2

8

∫

d4x̃

[

4
∑

i=1

φ2
i −

8
∑

i=5

φ2
i

]3

. (3.24)

In the last step we have used the relation 2RAdS/ℓp = (25π2N)1/6 [13], which relates the

radius of AdS with N units of flux to the eleven-dimensional Planck length. For a non-

vanishing value of h, this is a sextic potential with unstable directions. Using a similar

argument as after (2.38), one can see that the potential (3.24) matches the deformation (3.7)

of ABJM theory. For k=1, it fixes theN -dependence of the operator O in (3.8) to be c∼1/N.

3.5 Extension to k > 1

The result of the previous section corresponds to the k = 1 case of ABJM theory. To

generalize to arbitrary k, consider the Zk orbifold of the eleven-dimensional supergravity

solution. In [13, 28], the metric on the seven-sphere was written in a Hopf-fibered way:

ds2S7 = (dχ+ ω)2 + ds2
CP 3 (3.25)

with χ periodic with periodicity 2π. The Zk action simply changes the periodicity of the

coordinate χ to 2π/k. Since the volume of the quotient space is smaller by a factor k than

8Actually the requirement of an asymptotically AdS4 × S7 background is sufficient.
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the original one, in order to have N units of flux of the four-form (3.10) on the quotient

space, we need to start with N ′ = kN units on the covering space. The circle labeled by χ

can be interpreted as the M-theory circle.

In the parametrization (3.12) of S7, we can exhibit the χ direction by writing

dΩ2
3 = [d(χ+ χ̃) + ω]2 + ds2

CP 1 , dΩ̃2
3 = [d(χ− χ̃) + ω̃]2 + ds̃2

CP 1 . (3.26)

where as before χ has periodicity 2π/k after the Zk identification.

The Zk identification on the χ direction rescales the volume of the S7, VS7 , by a factor

1/k. As pointed out in [14], the bulk scalar field ϕ survives the Zk quotient, so, to extend

the previous discussion to an arbitrary value of the Chern-Simons level, it suffices to trace

back its contributions in the computation of the effective potential. As a consequence

of the orbifolding, the actions (3.1) and (3.5) get rescaled by a factor 1/k and therefore,

the propagator for the field ϕ (3.22) has to be multiplied by a factor k. The M2-brane

action (3.13) is unaffected by the identification since the M-theory direction is transverse

to the M2-brane. The overall effect of the Zk action is to rescale the final result (3.24) by

a factor k2. Substituting N ′ = kN , it combines into

∫

d4x̃ Veff(x̃) = − h

kN3

3π2

8

∫

d4x̃

[

4
∑

i=1

φ2
i −

8
∑

i=5

φ2
i

]3

. (3.27)

We now discuss various parameter regimes of the theory of N ′ = kN M2-branes on

a C
4/Zk singularity to comment the k and N dependence of the effective potential. As

discussed in [13], the radius of the M-theory circle in Planck units is of order RAdS/kℓp ∼
(kN)1/6/k, while the radius of the CP 3 factor is always large in Planck units if kN ≫ 1.

Thus the M-theory description reduces to a weakly coupled type IIA string theory whenever

k5 ≫ N . In this limit, the M2-action (3.13) reduces to the action of a D2-brane in an

AdS4 × CP 3 background. Due to the presence of two dimensionless parameters N and k,

we can also define a ’t Hooft coupling λ ≡ N/k and consider a ’t Hooft limit N → ∞
with λ fixed. The radius of curvature in string units is of order λ1/4, so the supergravity

description is valid if λ ≫ 1. In this ’t Hooft limit, M-theory (or eleven-dimensional

supergravity) always reduces to weakly coupled type IIA string theory (or supergravity),

and the spherical M2-branes are really D2-branes.

From (3.27), we can infer that the operator O in (3.8) scales like c ∼ (kN3)−1/3. Since

N/k is fixed as N → ∞, the 1/kN3 dependence of the triple trace deformation of ABJM

theory precisely agrees with the 1/N4 scaling assumed in [14], based on the requirement

that the ’t Hooft limit should exist and be non-trivial.

Acknowledgments

We are grateful to T. Hertog for collaboration in the early stages of this project, and to

V. Balasubramanian, M. Berkooz, V. Hubeny, S. Minwalla, M. Rangamani and N. Turok for

useful discussions. We also thank T. Hertog and N. Turok for comments on the manuscript.

B.C. acknowledges the hospitality of the TIFR Monsoon Workshop on String Theory and of

– 19 –



J
H
E
P
0
8
(
2
0
0
9
)
1
1
2

the Galileo Galilei Institute for Theoretical Physics as well as partial support from INFN.

This work was supported in part by the Belgian Federal Science Policy Office through

the Interuniversity Attraction Pole IAP VI/11, by the European Commission FP6 RTN

programme MRTN-CT-2004-005104 and by FWO-Vlaanderen through project G.0428.06.

A Brane effective potentials in the Poincaré patch

The computations of D-brane effective potentials in the main text were done for spherical D-

branes in global AdS space-times. In this appendix, we discuss the analogous computations

for flat D-branes in the Poincaré patch of AdS.

In Poincaré coordinates, the AdSd+1 metric reads

ds2 =
R2

AdS

ρ2

(

−dt2 + dρ2 + d~x2
)

, (A.1)

where d~x2 is the flat metric on R
d−1 and 0 ≤ ρ ≤ ∞. In this parameterization, the

spacetime has an horizon at ρ = ∞ and the conformal boundary at ρ = 0 is R
d−1.

Expanding a free massive scalar field in Minkowski plane waves,

ϕ(~x, ρ) = e−iωt+i~k·~xρd/2Ψ(ρ) , (A.2)

the radial wave equation becomes

ρ2∂2
ρΨ + ρ∂ρΨ −

[

m2 +
d2

4
+ ρ2

(

~k2 − ω2
)

]

Ψ = 0 . (A.3)

For q2 = ~k2 − ω2 > 0, the two solutions are [23]

Ψ+
1 (ρ) = Kν(qρ) , Ψ+

2 (ρ) = Iν(qρ) , (A.4)

with ν = 1
2

√

d2 + 4m2R2
AdS. In the mass range m2

BF ≤ m2 < m2
BF + 1/R2

AdS we are

interested in, corresponding to 0 ≤ ν < 1, both solutions are normalizable at the boundary

of spacetime, while only Ψ+
1 is regular in the interior in the sense of (2.33).9 In our

computation of the D-brane effective potential, one would expect that only the q2 = 0

modes contribute. However, we will see that it is useful to consider a regulator momentum

q20 > 0. For q2 > 0, we construct the propagator starting from the solution that is regular

at the origin and from a solution with specified behavior near the boundary:

Ψ1(ρ) = Kν(qρ) , Ψ2(ρ) = Iν(qρ) + CP
∞Kν(qρ) , (A.7)

9For q2 < 0, the solutions are

Ψ−

1/2(ρ) = J±ν(|q|ρ) , (A.5)

when ν is non integer and

Ψ−

1 (ρ) = Jν(|q|ρ) , Ψ−

2 (ρ) = Yν(|q|ρ) (A.6)

for integer ν. Regularity in the interior selects a Hankel function, while for 0 ≤ ν < 1 both solutions are

normalizable near the boundary.
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where CP
∞ will be chosen such that Ψ2 satisfies the boundary conditions of interest. The

Feynman propagator then reads

GF (~x, ρ; ~x′, ρ′) = − κ2
D

R
(d−1)
AdS VSD−(d+1)

∫ ∞

−∞

dω

2π

∫

dd~k

(2π)d
e−iω(t−t′)+i~k·(~x−~x′) ×

ρd/2ρ′d/2{θ(ρ− ρ′)Ψ1(ρ)Ψ2(ρ
′) + θ(ρ′ − ρ)(ρ↔ ρ′)} , (A.8)

where D = 10 (or D = 11) respectively for type IIB supergravity (or eleven-dimensional

supergravity). We are now ready to specialize to the two cases of interest in this paper.

Consider a probe D3-brane (or M2-brane) extended in flat four-dimensional (or three-

dimensional) space sitting at a radial Poincaré coordinate ρ̄ and localized at a point in S5

(or S7).

In the five-dimensional setup of section 2, ν = 0 and the source terms are

JDBI(ρ) = 5γ
τ3

RAdS

(

cos2 ξ − 1

5
sin2 ξ

)

ρ δ(ρ − ρ̄) , (A.9)

JWZ(ρ) =







−10γ
µ3

RAdS

(

cos2 ξ − 1

5
sin2 ξ

)

ρ ≥ ρ̄

0 ρ < ρ̄ .
(A.10)

The propagator satisfying the boundary conditions (2.5) defined at the scale µ appearing

in (2.3), has

CP
∞ =

f

1 + f
(

γE + ln q
2µ

) , (A.11)

where γE is again Euler’s constant. Here we see why it is useful to introduce a regulator

q2 = q20 > 0: for q2 = 0, we would have found an infrared divergent expression (we will

comment more on this below). The (regularized) effective potential computed as in (2.38) is

∫

d4xVeff(x) = − f

1 + f
(

γE + ln q0

2µ

)

5π2

3N2

∫

d4x

[

φ2
1 −

1

5

6
∑

i=2

φ2
i

]2

, (A.12)

where we have introduced the fields

φ1 ≡ √
τ3
R2

AdS

ρ̄
cos ξ, φ2 ≡ √

τ3
R2

AdS

ρ̄
sin ξ cos Ω1, . . . (A.13)

with canonical kinetic term

Skin = −1

2

∫

d4x ∂αφi∂
αφi . (A.14)

We can now explain what is the role of the IR regulator q20. Since the sources do not

depend on t and ~x, only the q2 = 0 modes should contribute to the effective potential.

As is easy to see by letting q0 → 0 in (A.12), this would formally give a vanishing result.

From a dual field theory point of view, this can be understood as follows. The scale µ
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corresponds to the scale at which the coupling constant f is defined, while q is the scale at

which the (renormalized) four-point function is computed. In the planar (large N) limit,

factorizable diagrams such figure 3 can be resummed and give rise to the running coupling

f/[1+f(γE +ln(q0/2µ))] appearing in (A.12). Note in particular that the formal vanishing

of the coupling for q0 → 0 is not reliable: for f > 0, the coupling becomes strong as one

flows to the IR and formally becomes infinite at some finite value of q0, before q0 = 0 is

reached. Note also that these infrared divergences were absent in section 2.4, since there

the radial position of the brane was effectively massive (corresponding to the conformal

coupling to the curvature of S3 in SYM theory on R × S3).

In the four-dimensional case, ν = 1/2 and the sources read

JDBI(ρ) = − τ2
RAdS

1√
2

(

cos2 θ − sin2 θ
)

ρ δ(ρ− ρ̄) , (A.15)

JWZ(ρ) =







2
µ2

RAdS

1√
2
(cos2 θ − sin2 θ) ρ ≥ ρ̄

0 ρ < ρ̄ .
(A.16)

The supersymmetric boundary condition sets

CP
∞ =

2

π
. (A.17)

The result for the effective potential computed as in (3.24) is

∫

d4xVeff(x) = − h

N3

3π2

8

∫

d4x

[

4
∑

i=1

φ2
i −

8
∑

i=5

φ2
i

]3

, (A.18)

in terms of the canonically normalized scalars

φ1 ≡ 2

√

τ2R3
AdS

ρ̄
cos θ cos Ω1, φ2 ≡ 2

√

τ2R3
AdS

ρ̄
cos θ sin Ω1 cos Ω2, . . .

φ5 ≡ 2

√

τ2R
3
AdS

ρ̄
sin θ cos Ω4, φ6 ≡ 2

√

τ2R
3
AdS

ρ̄
sin θ sin Ω4 cos Ω5, . . . (A.19)

The final result does not depend on the regulator q0. This is in agreement with the fact

that the boundary conditions (3.4) are AdS invariant and that in the planar limit the corre-

sponding multi-trace deformation is exactly marginal and preserves conformal invariance.

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200]

[SPIRES].

[2] C. Vafa, Superstrings and topological strings at large-N , J. Math. Phys. 42 (2001) 2798

[hep-th/0008142] [SPIRES].

– 22 –

http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9711200
http://dx.doi.org/10.1063/1.1376161
http://arxiv.org/abs/hep-th/0008142
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0008142


J
H
E
P
0
8
(
2
0
0
9
)
1
1
2

[3] H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries,

JHEP 10 (2004) 025 [hep-th/0409174] [SPIRES].

[4] D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Continuous distributions of

D3-branes and gauged supergravity, JHEP 07 (2000) 038 [hep-th/9906194] [SPIRES].

[5] N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP 04 (1999) 017

[hep-th/9903224] [SPIRES].

[6] V.E. Hubeny, X. Liu, M. Rangamani and S. Shenker, Comments on cosmic censorship in

AdS/CFT, JHEP 12 (2004) 067 [hep-th/0403198] [SPIRES].

[7] T. Hertog and G.T. Horowitz, Towards a big crunch dual, JHEP 07 (2004) 073

[hep-th/0406134] [SPIRES].

[8] B. Craps, T. Hertog and N. Turok, Quantum Resolution of Cosmological Singularities using

AdS/CFT, arXiv:0712.4180 [SPIRES].

[9] O. Aharony, M. Berkooz and E. Silverstein, Multiple-trace operators and non-local string

theories, JHEP 08 (2001) 006 [hep-th/0105309] [SPIRES].

[10] E. Witten, Multi-trace operators, boundary conditions and AdS/CFT correspondence,

hep-th/0112258 [SPIRES].

[11] M. Berkooz, A. Sever and A. Shomer, ‘Double-trace’ deformations, boundary conditions and

spacetime singularities, JHEP 05 (2002) 034 [hep-th/0112264] [SPIRES].

[12] J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation,

JHEP 02 (1999) 011 [hep-th/9812073] [SPIRES].

[13] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091

[arXiv:0806.1218] [SPIRES].

[14] B. Craps, T. Hertog and N. Turok, A multitrace deformation of ABJM theory,

arXiv:0905.0709 [SPIRES].

[15] B. Craps, T. Hertog and N. Turok, in progress.

[16] T. Hertog and G.T. Horowitz, Holographic description of AdS cosmologies,

JHEP 04 (2005) 005 [hep-th/0503071] [SPIRES].

[17] M. Günaydin, L.J. Romans and N.P. Warner, Compact and non-compact gauged supergravity

theories in five-dimensions, Nucl. Phys. B 272 (1986) 598 [SPIRES].

[18] P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity,

Ann. Phys. 144 (1982) 249 [SPIRES].

[19] M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Asymptotic behavior and

Hamiltonian analysis of anti-de Sitter gravity coupled to scalar fields,

Annals Phys. 322 (2007) 824 [hep-th/0603185] [SPIRES].

[20] A. Sever and A. Shomer, A note on multi-trace deformations and AdS/CFT,

JHEP 07 (2002) 027 [hep-th/0203168] [SPIRES].

[21] T. Hartman and L. Rastelli, Double-trace deformations, mixed boundary conditions and

functional determinants in AdS/CFT, JHEP 01 (2008) 019 [hep-th/0602106] [SPIRES].
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